Level crossing technology.
Safe. Reliable. Capable.

FSP-RS
PINTSCH-type wheel sensor
Application

The FSP-RS PINTSCH-type train detection system consists of the Frauscher wheel-sensor system and the PINTSCH RSA wheel-sensor evaluation module and is used as a distributed activation sensor for level-crossing control systems or as a train approach indicator for signal cabins (interlocking towers) in case of constricted space and/or steel sleepers (ties) near the strike-in points. FSP train detection systems are primarily used in the case of wooden or concrete sleepers (ties) and in case of Y-steel sleepers.

The wheel sensor is designed for train speeds of 5 to 180 km/h. The FSP-RS wheel sensor can be used on level-crossing control systems at strike-in points as a replacement for the FS1/11 and/or FS2/12. Twisted star quad cables must be installed under all circumstances between the wheel sensor at the rail and the evaluation module in the equipment building.

Features:

- Extremely reliable
- Immune to eddy-current brakes
- For train speeds from 5 to 180 km/h
- For use in constricted spaces and/or on steel sleepers
- Display of ACTUAL states on RSA module
- Can be used with one or two wheel sensors at strike-in point
- Twisted star quad cables necessary along rail line
FSP-RS
PINTSCH-type wheel sensor

Functional principle

The RSR122 consists of two electrically isolated sensor systems. “Unprotected” strike-in points (only in case of crossing-protection signals), consisting of a single wheel sensor using both sensor systems or “protected” strike-in points (in case of crossing-protection signals, Fü and ÜS0E), consisting of two wheel sensors in each case, using the inner sensor system of each sensor, can be implemented.

The Frauscher evaluation unit and, where necessary, the PINTSCH RSA wheel-sensor evaluation module, are installed in the equipment building. The RSA module consists of a primary power supply and two independent evaluation units (designated System 1 and System 11), which process the signals from the Frauscher evaluation unit for the level-crossing control system.